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ABSTRACT
The existence and uniqueness of solutions for the equation
max{th - £',...,1% - £, lou] - g} =0 in @

u|a9 =0

are considered. Here IP, p = 1,...,m are second order uniformly elliptic

operators, Du 1is the gradient of u and £P, p=1,se.,m, g are non-

negative functions. We approximate the equation by a system of penalized

1,

equations and prove the existence of solutions in the class wz"' RkRYnNnw “).

foc
The uniqueness of solutions is considered in the class C‘(ﬂ) N C(§3. Not
only in the proof of the uniqueness but also in the existence proof, we use
the notion of viscosity solutions.

Moreover we prove the uniqueness in the space C(R) in the case m = 1.

We also prove the uniqueness of viscosity solutions of a minimax equation.

AMS (MOS) Subject Classifications: 35365, 35360

Key Words: Hamilton~Jacobi-Bellman equations, Obstacle problems, Viscosity jgifﬁ;@
solutions, Minimax equations, Variational inequalities. :::t-“;j
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SIGNIFICANCE AND EXPLANATION

‘As the first order Ramilton;ahcobi equation is related to a control
problem associated with ordinary differential equations, the Hamilton-Jacobi~
Bellman (HJB) equation arises from a control problem with random noise. In
the stationary problem, the HJB equati:?<r1ﬂ,t?f,£?:? o ‘ (

sup {1%u - €%} = 0"
.13

~

)

| A a
where 1% are second order linear elliptic operators with parameter a € A.

In this paper, we are concerned with the HJB equation of the form

oo F .
max(@‘h - f‘X...;IFu - £, 4Du[ -qgl =0

with the Dirichlet boundary conditio;T{;Tign; 0. We cinnot exﬁ;ét ;he \ 

existence of smooth solutions because of theﬁasstaéi; t;rﬁ.g|DuLf:”g. VWe

prove the existence of solutions which satisfy the equation almost everywhere.

Using the notion of weak solution (so called viscosity solution) we prove the

uniqueness of the solution in the class of continuously differentiable

functions.

The method of the uniqueness proof is also applicable to other obstacle

problems. We prove uniqueness results in the class of continuous functions

upa

for two model problems.
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THE HAMILTON-JACOBI-BELLMAN EQUATION WITH A GRADIENT CONSTRAINT ’.{n‘
*
! Naoki Yamada e
[ I G
N 1. Introduction
) *‘. =
: In this paper we are concerned with the existence and uniqueness of solutions of the Hﬁr s
Lo o8
Hamilton-Jacobi-Bellman (HJB) equation with a gradient constraint. N
¥
: Let P, p = 1,...,m be second order linear elliptic operators defined in a bounded ‘3;Fr5
X .“ s\,
. domain o in RY, Por given non-negative functions £P, p=1.00,m and g, we consider ? 3;!
AR S
-t
the Dirichlet problem O Ol

max{L’u - f’,...,L"u - £, |bu] =g} =0 tn 0 ,
(1.1)

[AA

ulyg =0 .

Here Du is the gradient of a function u.

P el i

Evans [2] was the first to treat the equation with a gradient constraint in the case

m=1 in (1.1). Relaxing the restrictions in [2], Ishii and Koike [9]) have proved the

existence of solutions in the space Wz'.(ﬂ) and the uniqueness in the class

2,r -
] .
wloc(n) C(1) with r > N

B

On the other hand, the HJB equation has been treated by many authors. Using a system

N of variational inequalities Evans and Friedman (6], Lions [10], and Evans et Lions {7] have -\NZ;

0 ’-_- -~

proved the existence of solutions in the space wz"(ﬂ) for uniformly elliptic HOB ﬁ,:§\

. RO

. equations. Moreover Fvans [4], (5] has proved the existence of classical solutions for W
< LY
A

uniformly elliptic HJB equations (see also Gilbarg and Trudinger (8] Chapter 17). By
defining an appropriate notion of weak or viscosity solution, Lions (11] has ohtained

S uniqueness in the space C(EW. with the aid of stochastic representation of solutions. 1In
. [11] it is not assumed that the operators are uniformly elliptic, but rather that they

5 contain zero-~th order terms with strictly positive coefficients. Note that our equation

g (1.1) is a non-uniformly elliptic HJB equation without zero-th order term.

'Department of Mathematics, Xobe University, Rokko, Xobe, Japan.
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In section 2 we state our assumptions and main result. Since we use a penalty method

to prove the existence of solutions, we introduce in section 3 our penalty systems and

mention their solvability. 1In saection 4 we establish a priori estimates for approximate

solutions. Section S is devoted to finishing the proof of our main result. First we
obtain existence of solutions in the class W:;:(ﬂ) al W".(ﬂ)- Then uniqueness of

solutions is considered in the class c‘(n) N c(53 by comparing an arbitrary viscosity

solution with a limit of approximate solutions. Not only in the proof of the uniqueness
but also in the existence proof we use the notion of viscosity solutions.

In section 6 we mention two remarks on the uniqueness of viscosity solutions of
obstacle problems. First we show the uniqueness of viscosity solutions in the space C@®)

when m = 1 in (1.1). Next we consider a minimax equation

mnin{max{-Au +u - £, u - w1}, u - Wz} =0 in Q ,

“'an =0
and prove the uniqueness of viscosity solutions in the space c(). In these proofs we do

not use any probabilistic arguments.

This work was completed while the author was visiting the Mathematics Research Center,
University of Wisconsin-Madison. The author would like to express his hearty gratitude to

Professor M. G. Crandall for his kind advice.
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2. Main result

let 0 be a bounded domain in RN with smooth boundary 3fi. Consider second order
elliptic operators
(2. 1) 1Py = .'gjvxixj + b{vxi +cPv, p=1,.0.,m ,
where m > 1 is a given integer. We use the summation convention throughout this paper.
We also follow normal usage to denote various function spaces such as cP(R), Ww'¥(Q) or
wT(R) etc. |pul denotes the size of the gradient of u, i.e. |oul? =JY_, u:i.

We make the following assumptions on 1IP:
(2.2) afye,e, > 0lel?
for some 9 > 0, all & ¢ RV and P = 1,...,m,

2.—
{2.3) agj, bg, P e 4

for p= 1,...,m and 1< i, § <N,

(2.4) ¥ cP > ¢
for some constant €g >0 in 2, p=1,...,m, .
(2.5) afj = ’51

for p= 1,.00m, 1< i, § <N,
On given functions f£P, g on Q, we impose the following assumptions:
(2.6) £, g 3@
for p = 1,se0,m,
(2.7) P, g> 0
in @ for p= 1,...,m.

Under these assumptions we may state our main theorem.

Theorem 2.1. (i) Under the assumptions (2.2) - (2.7), there exists a solution

wewr @ nw®

toc () of the equation

1
max{L u - f1,--~.Lmu - fm, |oul - g} =0 a.e. tn 2 ,
(2.8)
“'an -0 .
(ii) If, in addition, g > 0 in 2, then the solution of (2.8) is unique in the class

1 -
C (R) N Cc(R), where the solution is understood as a viscosity solution satisfying the

boundary condition.

-3~

el
e I8
vt

P
. v
', A

<

LR R A
CE T




o

S CONRIT Y

L 3
-

)

-

3

3. Approximate systems
In this section we construct approximate systems for (2.8). Let ¥ ¢ @(R) be a
function such that
Y(e) =0 if €< 0, P(e) = =1 if t> 2 ,
{(3.1)
Y'(t) > 0, ¥(e) > 0 on R .
For € > 0 we put B .(t) = Yo (t) = ¥(t/e). Note that

(3.2) Be(t) < tBl{t) on R.

We consider the following approximate systems:

p P n2_ 2 P _ P, . ,P Q
Luc+85(|Due| g) +v lul -u ) =€ in '

{3.3)
u 'an 0, p 1,¢:,m, where u, u, .

To prove the existence of solutions of (3.3), we use the method of successive
approximation. In the sequel we omit the subscript € for simplicity.

Define approximate solutions “?n)' p= 1,.eem n=1,2,..., for (3.3) by induction
on n as follows: '

Pirst, let u{’” =0 for p = 1,eee,me If “?n-ﬂ’ p=1,...,m have been determined,

then we define ufn), p=1,¢s.,m, as the solution of

p P P 12 _ 2 P _ P*! . n
Lhui, + 8(‘Du(n)| g) +ylup ) = wi ) =0 in .
(3.4)
P m+1 - 1
u(h)lan =0, p=1,...,m vhere u ., =U. . -

It is known that there exist u?n) € C3'6 @, P=1,...,m for some 6 € (0,1) which
solve (3.4).
If we see

(3.5) < const

1’

(n) W1'.(Q)
for p= 1,...,m and uniformly in n, then existence of the solution
ug € wz'r(ﬂ) a w;"(m (1 <r ¢<=) of (3.3) follows from linear elliptic theory.
Moreover, by applying regularity results for elliptic equations, we have “E € c"""‘s ),

P = 1,000,Mme
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We defer the proof of (3.5) to the next section since its proof is quite similar to

that for a priori estimates independent of €.
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4. A priori estimates

In this section we shall derive some a priori estimates for solutions qf, p™ 1,000,m,

e T e e
l. b4

of (3.3) which are independent of € > 0. We always assume (2.2) - (2.7).

e '
*

lemma 4.1. We have

(4.1) 0< ug <c in Q ,
8u§
(4.2) 0« 3—;‘ C on 232 .
Here and hereafter capital C denotes various constants depending on known constants and wn]
9/3n  denotes the inward normal derivative on df. fA{j

Proof. let wP ¢ C>(f) be the solution of S

tP® = ¢® in 0 ,

(4.3) L,
Pl = ey
w |an o . o
Since Lpug < fp, “E'an = 0, applying the comparison theorem, we have ug < WP in Q. R
Let xq € 5, Py be such that
o4
0 .
(4.4) w (x,) = min  uPoo) .
€ 0 = € ~
x€ .

P=1,cce,m

1
We shall see ueo(xo) > 0. We suppress the sub and superscripts €, p, and denote el
p.t+! ol

v = ue0 « First, consider the case x; € Q. In this case we have Du(x;) = 0 and

u(xo) €< vixg). Hence, we have applying the maximum principle,

0> -aij“xix (xo)

3

2 2
= fixg) = BUIpulx)|” = alx D) = vlulxg) = vixy))

- hi(xo)“xi(XO) - c(xo)u(xo)

- f(xo) - c(xo)u(xo) .

Prom (2.4) and (2.7), we get u{x,) > 0. e




-t.’ ' T

In the case x; € 3R, it is obvious from the houndary condition that

0 = u(x,) € ulx). Therefore we have shown (4.1), and (4.2) 18 a consequence of (4.1).

Remark. To get 1”(R) and w1'“(3ﬂ) estimates of the successive approximate solutions
u%n), we need only make a minor modification. The upper bound ufn) < wP(x) still holds.
We shall see 0 < ufn)(x) by induction. It is obvious in the case n = 1, Assume that
0<uP _i)(x) for all p and x € @. let x5 €, py be such that (4.4) holds where uf
is replaced by uf ,. If ufg)(xo) <0, then x,ef and Ye(ufg)(xo) - ufgj:)(xo)) = 0,

Therefore we have by the same calculation at xo as in the proof of lLemma 4.1,

P P

0 P
0> f (xo) -C

0 0
(xo)u(n)(xo) *
Since this contradicts the assumptions (2.4) and (2.7), we get 0 ¢ ufn)(x).

In the following we write uy, “1j' ’ij,k"" for uxi, “xixj' aijxk”" .

lemma 4.2. We have

(4.5) |u§| <c .

Proof. Consider the function
(4.6) wP(x) = [Duf|? - Auf

where X > 0 1is a constant to be selected later on. Let Xq € 5; Py be such that

p
(4.7) weo(xo) = max w:(x) .
x€Q
p=l,..c.,m
po+1
We again suppress the sub and superscripts €, py and denote v = u 1 B(v) =
2 2
B(lpul® - g%), Y(*) = y(u-v) and etc.

First consider the case x, ¢ ., In this case we have by the maximum principle,
0 < 'aijwij
- ’zaij“kiukj - 2‘£j“kij“k + A ‘ij“ij
= =28y g0 Uy - 20,80 ()1 (2uguy = (g7
- 20,7 () (uy - v + 2u (B £

s AB(o) + Av(s) + A(DYu - £) at xq

< et - o . L I R - . L. e . -

a " e wm - -, » - - --. .~.-"'~l-~- T S Ol - - Cld .
DY WS Y P 0 L, PE.UN V. PN s WO L P Y L PR W VRS YAE Y i Wiy Wil PO T VA WRC Y

R P R R S T PO G - “ . PR [ Car. oAl S




T g T VT DY, T g TITYUwY . : v AR At il Sd Bh S B et St b But Ju dot bghfet

R LoRaL IR AL S\ D A i e R e

o
e
¢
W
]
N ~2
X Here Du = .ij'k“ij - bi“ki. - bi,k“i - C\lk - Ck\l .
. B! +
.- us= biui cu
p where we have used (3.3) and differentiated it once.
. Therefore we get
202 _ a2y _ 2

: 0 < - 201p“ul B'(*) (4 u ,uu, - 2ulg )]
N -¥'(s) (2u tu = v)] +clou| + c|pu] |D%ul
.: k 'k k
N iy

+ADu=-f +8() +Y(*)] .
X Continuing the calculation, we obtain
5 0 < -8]p%al? + cloul? + rctlbul + 1)
- (4.8) -B'(*) (4 u ,un -2u(92) = A{u,u -92)]
-, - ki k¢t ) 3 x [ A )
:; - V(e - - -
. Y'e) [0 (u - v ) = Au-v)] ,
| where we have used (3.2). Since
- Py patt
:-\ 2up(uy = v ) = A(a - v) > v, (xo) = (xo) >0 ,
iy
RS we have
.\ . -‘-‘--
D4 (4.9) ') [2uluy =~ v) =A(u=-v)] €0 . N,
. On the other hand, since w,_(xo) = 0 we get
- 4 uggupuy = Auyyy .
.' Therefore we have

8'(+) [4u uu, - 2u(g2), - A(u,u, - g°)]

kL k2 k k [ A 3
(4.10) '
> o vy 2 _ 2 2 ;
R -8()[A|Du' Zuk(g )k+Aq] .
<.‘ Comhining, we get
»
0<cipul? +act|oul + 1)

3
- -80(¢) loul? - 2u.(q?), +2g%] .
o -8~
o
e




— _'_~—.,_‘--—~._-w'_-

We may assume that B'(¢) > 1 at Xg, hecause otherwise we can immediately derive a bound

for !Dulz and therefore for w. Thus we have
(3.11) 0 < (c-2)Ipuf? + Ac(loul+t) + 20, (g%, - Rg? .
Now we choose A large enough to obtain a bound for |Du|2 and therefore for w at Xqe

Next consider the case x, € 3. In this case, we get a bound for w at once from

w"'(aﬂ) estimate.

Remark. To obtain a w"'(n) bound for the successive approximate solutions we proceed as
follows. Consider the function wfn) defined by (4.6) where ug is replaced by u%n)
and let pjy, %y be as in (4.7). We may assume xq € Q. We shall show the boundedness of

lDU?n)l - by induction. By the same calculation in Lemma 4.2 we have (4.8). By the
L ()

p pp*+!
induction assumption we may assume v(g)(xo) > '(3_1)(xo). Then we have (4.9). (4.10) is

also satisfied in this case. Hence we get (4.11), with constants C independent of n.

lemma 4.3. We have

P
(4.12) foll ,. <cC .
W )
Loc

Proof. let § be a function in 63(0) such that 0 <€ [ € 1. We shall derive a bound of
2
X = max g(x)}o up(x)l .
= €
xefl
P=1,¢s.,m

Without loss of generality, we may assume that X > {. Let Xqg € Q, Po be such that

p
K= C(x°)|02u£°(xo)l and consider the function

2 2 2 Pg 2
i) = o0 lpfl o] + xn(x)au(xo)u‘:’u(x) +u ot |

where X, U > 1 are constants to be selected later on. Let Xq € 5, py be such that

P
'51(x1) = max ws(x) .
xeil
pP=1,000,m
We may agsume that x, € Q.
p.+1
In the following we suppress the sub and superscripts €, p; and denote v = u ’

Po

2
Brp = Ay (xg)y B(*) = B(lpu!” = qz), Y(*) = Y(u - v) and etc. Using the maximum principle
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and the differentiated equation of (3.3), we have at x,

(4.13)

Here D

0« -tz'ijvij

= -2th - 2%

13%x24%xt 19%%1%xy

<12t + Ama 8y ()oul? - g%y (Iou)? - gP), 4+ vo(e ) (umv), (umw),)
2280 () {(22u, + Ama ) (Ioul? - of), + 2um (Ioul? - gB)

Ay elezdn, + ARa,, ) uv),, + i (umv), )

3\!

v etz + ke ) B+ £, + 2t B+ £

2,2 2
SAETET) 8, Nty ~ AT O 8, 0,

-Mtr,zc a

2, 2
=) 4% 4% e 1%229% °

is an i-th order Adifferential operator.

If we choose A such that A > 2N2/9, then we have

(4.14)

2 2 2
(2, +Ama gL, > ke - x|a, DIg]%> 0

for any € € RN,

On the other hand, since W, = 0 at xq we have

(4.15)

2 2

2 2 2
(2%, , + m“kz"“"" 9, + Zuuk(lbul - g

2 2
= =2(% )i“kluklui - 2kkziakluk£u1 + 4 Uyg UiV s
s2ARa 0w - %2(g) -AK (gD o, - 2(g2)
et BeiMes ke Ve A ] k%

> k{2008 - 2)z10%l? - aclpZl ~ 4 +wic} .

We also have

(4.16)

2

(2 v, Anam)m v)k’~ + 2uuk(u-v)k
Py p,+!

> v (x1) - v (x1) >0 .
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The last six terms in (4.13) are estimated as follows:

2 2 ~3 2 ~2
L §14 L) + XKzukl)(D u + fu) + g “k(D a + fk)

2, 2
- AT A gy T ”“2‘1")::‘13‘&:3
(4.17)

2,.2 2
- g )Lj'ij“kt“kl -A\K :“au.”nu

< ec‘|n3ul2 +22ek? sack vl .
Substituting (4.14) = (4.17) into (4.13) and using (2.2) we have
0 < -200z21p%u12 + 2%cK? + AcKk + 1
(4.18)

- 2258 (o ){2000-2)z 0%l 2 - Aclp] - (Aw)O)
at x4 where ) > 2N2/0.

First consider the case

2u0z2|02u|2 < A2cx? +acxk +u?c at x. .

1

Then we have

Py 22 2 Py 2 1.2
v (x.) ¢ e (x1)|D u, (x1)| +< K +uc

23 %

ATC 1,2
<(m+-‘-)x +mx+rc+uc .

If we choose 1 so large that 44 ¢ 28, then we have

p
1 1.2
“e (x1) < E'K +CKk+C .

On the other hand since
| J P P P P P
0 0 0 0 0 0
uuukl(xo) > bk (xo)uk (xo) +c (xo)u (xo) £ (xo)
> ¢ ,

we have

Pg 2
(4.19) Ve (xo) ? X° = ACK - uc ,

Therefore we get
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b (4.20) grCcx+c by

which implies the boundedness of K. .

)

N Next consider the case
S} 2008 - 2)z]0%al? < Aclp®ul + A +u)C at x, . :
If we choose ) satisfying 1 ¢ 2(26 - 2), then we have

- t210%ul? < Az Ipul + (A +u)c ar x,

5 2 Py

. which implies the boundedness of §(x,)|D"w '(x,)|. Hence we have
N ,

‘E (x1) CCK+C .,

- By (4.19), we also have (4.20) in this case. Therefore the proof is completed.
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5. Proof of the main result

1
In this section we shall prove the existence of solutions in W:;:(ﬂ) Nw”@) ana

the uniqueness of the viscosity solution in the class C‘(ﬂ’ N C(), which completes the

proof of Theorem 2.1.
, 2,. 1,.
Lemma 5.1. There exists a solution u of (2.8) belonging to wlocm) nNw'' @),

Proof. TFrom a priori estimates in the preceding section, we can choose a sequence ej
{which we simply denote £) such that

“!e, + uP, Dug » puP uniformly in T ,

2p 2p 4
D7u. + D'u weakly in :.loc(m with v <» .

Since Yc(ug - u§+ 1) are locally bounded, it follows that the uP defined in (5.1)
satisfy u' = e w Pz ue "fc',:m) N w".(ﬂ). We shall prove that u solves (2.8).
First we note that 1Puf - fP < 0 a.e. in Q. Hence we have 1Pu - £P < 0 a.e. in 0,

2

P = 1,...,m Since 8€(|m£|2 = g”) are also locally bounded, we get

(5.2) mx{!.‘u - 11,...,!.“\1 -, lou]l - g} < 0 ace. in 0 .

To prove the inequality in the opposite direction, it is sufficient to show that u
is a viscosity supersolution of (2.8). Let ¢ ¢ c’(m and assume that u -~ ¢ takes its
local strict minimum at x4 € 1. We shall show

(5.3) max {(-a®

}
- . quij+b§'1+cpu-f.|m|-g)>o at x; .
reses

Since |D!(xo)| > glxg) implies (5.3), we may assume |Dp(x°)| < glxg). Since P
converges to u uniformly, there exists a sequence {xg} C 1 such that

(i) 1lim xs =~ x, for any p * 1,e00,m ,
€+0

{(i1) \lz - 9 attains its local minimum ac xP ,
(1is)  Ioeedr] < g

For each €, let p(c) be such that

(5.4) WP - )P« min P -0
pP=l,scem
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Since p varies in a finite set there exists ; which appears infinitely many times in

(5.4). Consider such p and € such that pl(€) = p. Then we have Bc(lbuglz - gz) =0

g -
and Ye(us - ug+ ) =0 at xs- Since ug is also a viscosity supersolution of (3.3), we

get

_P
®13%13

Passing to the limit as € + 0, along which we take p = p(e

P, PP > ¢P
+ bi'i +cC ue b4 at x .

P
€
), we have (5.3).

Jemma 5.2. Assume g > 0 in R. Then the viscosity solution of (2.8) is unique in the

class c‘(ﬂ) N C(ﬁ).

Proof. By Lemma 5.1 we have a solution u belonging to W:;:(ﬂ) N W".(ﬂ) and
approximate solutions ug which converge to u along a subsequence. In the following we
fix such a u and convergent approximate solutions ugj (simply we denote qg).

Let v be any viscosity solution of (2.8) which belongs to C‘(ﬂ) N c@).

Pirst we claim that v €< u in Q. If not, there exist xXq € f and Py such that

Py p
{5.5) (v=-u )x)= max (v =u )(x) >0 .
€ 0 = €
xef
p=1,¢00,m

Since v is a viscosity subsolution, we have

P, P P, P P P
0°0 00 0 0
- + <
aijue,ij bi ue,i +c v £ at Xy v
(5.6)
Py |
< .
|Due (x4) g(xy)
Po,2 2
The second inequality in (5.6) implies BE(|Due 1“« g%y =0 ac Xo and (5.5) implies
p0 po+1
Yc(ue - u ) =0 at x3. Hence we have
P, P P, P p, P )
0°0 00 00 0
- + + .
aijue,ij bi u€'1 c u = f at  xq

Subtracting this from the first inequality in (5.6), we get

P P
c Olxg) (v = ugP)(xg) € O

-14-
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which is a contradiction.
Next we shall show that pu <€ v in 2 for 0 <p < 1. If not, there exist
p e (0,1) and xqg € S such that

(5.7) (v - pu)(xo) = min (v -pu) <0 .
xef}

Since v € c'(R) we have |Dv(xg)| = piDulxg)| < g(xy). Then there exists a ball U with
center x, satisfying
. (5.8) lovl < g in U .

This implies that v is a viscosity supersolution of

(5.9) max {tPv - £} w90 in v .
p=lsece,m

. Consequently v is a viscosity solution of (5.9) in U. Considering (5.9) with boundary
) condition ¢ = “‘30' it is xnown (Evans (4], [5], Gilbarg and Trudinger {8] Chapter 17)

that (5.9) has a smooth solution. On the other hand it is also known (Lions [11])) that the

* viscosity solution of (5.9) is unique. Therefore we can conclude that v is the smooth
? solution of (5.9) in U.
4
By a selection lemma, there exists a measurable function p : U+ {1,...,m} such that
S Py - ¢P(X) 2 g a.e. in U .
.. Since u is a subsolution of (5.9) we have
: (5.10) P (v - puy(x) - (1-0)12P(*)} 5 0 ae. 4n U .
On the other hand by Bony's maximum principle we get
\
) (5.11) lim ess inf (-ai’;x)(v-pu)ij + bf(x)(v-pu)i) <o .
. x*x
. o
-: Combining (5.10) and (5.11) we have
; P(xg) Plxg)
e (xg)}(v=pu) (xq) = (1-p)f (xp) 2 0
-~ which contradicts (5.7).
Since p is arbitrary in (0,1) we have v = u in Q1. This completes the proof.
-«
N
By Lemmas 5.1 and 5.2 we have completed the proof of Theorem 2.1.
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Since lLemma 5.2 asserts that any viscosity solution in c‘(n) (3} C(ﬁ3 can be

approximated by solutions ug of the approximate system, we have the following comparison
result.
Corollary 5.3. Llet u € C(53 be a viscosity solution of

max {(tPu-¢£°, Ipul -g) =0 in 0 ,
(2.8) pPEl,c0e,m

“‘30 =0
and u € c’(ﬂ) N c(f) be a viscosity solution of

max {(tP3 -¥P, joul -9 =0 in & ,
(ife) PEl,e0e,m

Ulgg =0 .

1 o< tP < PP, P™ t,eee,m and 0 < g ¢ ; in 2, then u¢ W in R.

-16-
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6. Remarks on the uniqueness of viscosity solution for obstacle problems.

In this section we show that the uniqueness of viscosity solutions for some other
classes of obstacle problems can be proved by the same mathod as in the previous sections.
To avoid needless repetition, we consider the modeled operator Iu = -Ay + u. Note that
the following proofs are based on the convergence of approximate solutions of penalized

equations and do not use any probabilistic arguments.

6.1. The case m = 1.

Consider the equation
max{-du +u - £, |Dul =g} = 0 ae. in & ,

(6.1)

vhere f and g are smooth and £ > 0, g > 0 in fi. This equation has been considered
in Evans (2], (3) and Ishii and Xoike (9]. They proved the unigueness of solutions in the
class W:Sz(ﬂ) N C(R) with r > N. We proved in Lemma 5.2 that for more general equations
the viscosity solution of (6.1) is unique in the class C'(ﬂ) N c(@). Moreover in this

case we have the uniqueness in the space C(IT Yo
Theorem 6.1. The viscosity solution of (6.1) is unique in the class cm).

Proof. Let u, be a solution of the approximate equation

2u, +u, +8, (lu 12 -g®) =t 1n 0,
(6.2)
U lag =0 -
By the same argument as in sections 3, 4 and Lamma S.1 (or by Evans [2]), there exist
ue€ W:;:(m Nw'™0) anaa subsequence “cj {simply we denote €y =€) which converges
to u as in (S5.1).
et v ¢ C(ﬁ') be any viscosity solution. By the same argument as in the first claim
in lemma 5.2 we have v € u in Q.
We shall show that pu< v in 8 for 0 <p ¢ 1. 1If not, we can find o ¢ (0,1),

(again we denote €, =¢) and x, € 1 such that
"cj 3 0

-17-




(1) x, + x

e ocac*O,

(11) (v - Pu ) (x.) = min (v - pu ) (x) ,
xell

(1ii) (v - ou)(xo) = min (v - pu)(x) < 0 .
xell

Since plm(xo)l < glxg) we have p|Dug(x.)] < g(x,) for small €. Since v is a
viscosity supersolution, this implies
(6.4) -pldu. +v>f at Xe o
¥rom (6.2) we have
- Py, +pu, < Ppf in 0 .
Subtracting this from (6.4) and letting € + 0 we have
(v-pu)(xy) = (1P)f(xy) > 0 .

This contradicts (6.3 - 111).

6.2. Variational inequalities

Consider a minimax equation
min{max{-Au +u - £, u -61}, u -wz} =0a.e. in 0 ,

(6.5)
“'aﬂ =0

vhere f, #1 and *2 are smooth functions satisfying *2 < 1’1 in @ and
¥alag € 0 € ¥ylaq-

It is convenient to formulate the notion of viscosity solutions of (6.5) in the
following manner. We say that u ¢ C(ﬁ-) is a viscosity solution of (6.5) if both (0) and

(1) hold:

(0) ¥, ¢u<vy, in Q, “'an =0 .

(1) Let e € cX(®)
(6.6) (1) 4f u - 9 attains its local maximum at Xq € 2 and
¥y(xg) < ulxy), then -Ap +uc f at x;,
if u - ¢ attains its local minimum at Xy € 2 and

u(xg) < '01("0)' then <=Ap + u > f at xg.
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Since (6.5) is equivalent to the following variational inequalities with bilateral
constraints:
bySuc v, in 2, ulg =0 ,
{ ~8u+u=¢f on {xecq | by cuc<i,}
~Au+u?>f on {xeft|u= L2 B
~Aa+u<€<f on {xeft|u= L 2% B
it is known (Bensoussan et Lions (1], Chapter 3, Section 5) that there exists a solution

ue wz"(n) with r > N which is a limit of solutions u, of the penalized equation

- A“e +u_ + ee(“e - #1) - Be(#2 - uc) =f in  ,

€
(6.7)

uelag =0 -

Theorem 6.2. let v € C(E) be a viscosity solution of (6.5). Then we have u = v in

Q.

Proof. We prove only v € u in £ because the inequality in the opposite direction can
be proved similarly.

It v<u in 2 does not hold, there exist 'tj (again we denote €y = €) and
xg € 1 such that

(i) x_  » x

>
e o 2as € o ,

(6.8) (i1) (v = “e)(*c) - ::x (v - ue)(x) .

(1ii) (v = u)(xo) = max (v ~u)(x) >0 .
xefl

Since ¥, € u<v at xg, we have ¥, < v and u, < v< ¥y near xq. Then
(6.6 - 1) implies

(6.9) - Aut +ve< £ at Xe

We also have Bc(“e - 0‘) = 0. Hence from (6.7) we get
(6.10) ~lu, +u. > f at x. . =
Combining (6.9), (6.10) and letting € + 0, we have K

(v - u)ixy) € 0

which is a contradiction.
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ABSTRACT (continued)

operators, Du is the gradient of u and fP, p = 1,...,m, g are non-
negative functions. We approximate the equation by a system of penalized .

equations and prove the existence of solutions in the class w:;:(n) N W‘”'(Q)-

The uniqueness of solutions is considered in the class c1(Q) N c(§3. Not
only in the proof of the uniqueness but also in the existence proof, we use
the notion of viscosity solutions.

Moreover we prove the uniqueness in the space C(§3 in the case m = 1.
We also prove the uniqueness of viscosity solutions of a minimax equation.
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